Summary from KEPCO report

(Arstroma's CCUS system in Dangjin 1MW Power Plant)

- 1. **Subject**: Development of next-generation CO₂ separation membrane commercial technology
- 2. **R&D period**: 2016. 5. 1 ~ 2020. 4. 30 (total 48 months)
- 3. Purpose and necessity of R&D
- Technology (Research)-130 (Jan. 27, 2016): Promotion of technology development in accordance with "Notification of Top-Down Research Project for Commercial Technology Development of CO₂ Separator"
- It is necessary to secure greenhouse gas offsetting allowances and technology to reduce the emission forecast by 37% in 2030
- Commercialization of process technology through on-site demonstration of new technology to which commercial separation membrane package is applied

4. Content and scope of R&D

Subject	Contents	
Membrane material Membrane module	 Polymer Intrinsic Membrane (Permeability 1153 GPU, Selectivity 10) 	
	 Establishment of mass production system (quality error < 3%) 	
	 Compact Membrane Module (Membrane Density 400 m²/ m³) 	
1MW class test bed	• Test Bed construction (2017. 10), accumulated 1,750 hours	
	 of operation 96% purity, 90% collection rate 	
	 Technology verification by the Philippine Ministry of Science and Technology (2018. 4, ETV-18-004) 	
Customized technology package	Development of optimal design tools for each performance goal (purity, collection rate)	
	Securing economic feasibility by collection cost- Deriving customized design standards	

5. Suggestions on R&D results and utilization

- Through this project, Arstroma developed the technology for the entire cycle of CO₂ separation membrane for material-process and completed the demonstration of the world's largest 1MW class test bed.
- Utilizing membrane materials, membrane modules, process design technology and demonstrations (drawings, operation data)., the joint research institute won an order for a plant to produce 360 tons of liquefied CO₂/day (Mauban City, Philippines).
- The developed technology and know-how will be used for future expansion of overseas (Southeast Asia, etc.) plant business and planning for separation membrane utilization technology (gas separation, new energy, etc.).

요 약 문

1. 제 목 : 차세대 CO₂ 분리막 상용기술 개발

2. 연구개발기간 : 2016. 5. 1. - 2020. 4. 30. (총 48개월)

- 3. 연구개발의 목적 및 필요성
 - 기술(연구)-130(2016.1.27) "CO2 분리막 상용기술개발 Top-Down 연구과제 알림"에 따른 기술개발 추친
 - 온실가스 상쇄배출권 및 2030년 배출전망치 37% 감축 대응기술 확보 필요
 - 분리막 상용패키지를 적용한 新기술의 현장 실증을 통한 공정 기술 사업화

4. 연구개발의 내용 및 범위

구 분	내 용	
분리막 소재 분리막 모듈	•고분자 고유 분리막(투과도¹⁾ 1153 GPU , 선택도 ²⁾ 10) - 대량 양산체계 구축(품질오차 < 3%) •컴팩트형 분리막 모듈(막 밀도 400 m ² /m ³)	
1 MW급 테스트베드	• Test Bed 구축('17.10), 누적 1,750시간 운전 - 순도 96%, 포집률 90% * 필리핀 과학기술부 기술 검증('18.4, ETV-18-004)	[1 MW급 CO ₂ 분리막 Test Bed]
맞춤형 기술패키지	•성능목표(순도, 포집률)별 최적설계 툴 개발 •포집비용별, 경제성 확보 맞춤형 설계기준 도출	

1) 단위면적, 시간, 압력 하 분리막 투과 CO2량, 2) CO2와 N2의 분리막 투과량 비율 [분리막 공정 최적 설계 툴]

5. 연구개발결과 및 활용에 대한 건의

- 본 과제를 통해 소재-공정의 CO₂ 분리막 전주기 기술을 개발하고, 세계최대 1 MW급 Test bed 실증을 완료함
- 분리막 소재, 분리막 모듈, 공정설계 기술, 실증(도면, 운전데이터) 등을 활용 공동연구기관은
 액화 CO₂ 360 톤/일 생산 플랜트 사업을 수주함(필리핀 마우반市)
- 개발 기술 및 노하우는 향후, 해외(동남아 등) 플랜트 사업의 확장 및 분리막 활용 기술(기체 분리, 신에너지 등) 기획에 활용하고자 함

- 2 -